說明
The project will generate more than 100 nearly-full-length gene sequences (and associated amino acid sequences) from strains in the family Streptosporangiaceae for each of the three target genes. The intention is to generate a genus-specific barcode for each of the 13 genera, as well as a family-specific barcode for each of the three genes.
資料紀錄
此資源出現紀錄的資料已發佈為達爾文核心集檔案(DwC-A),其以一或多組資料表構成分享生物多樣性資料的標準格式。 核心資料表包含 122 筆紀錄。
此 IPT 存放資料以提供資料儲存庫服務。資料與資源的詮釋資料可由「下載」單元下載。「版本」表格列出此資源的其它公開版本,以便利追蹤其隨時間的變更。
版本
以下的表格只顯示可公開存取資源的已發布版本。
如何引用
研究者應依照以下指示引用此資源。:
Meyers P (2019): FBIP: Molecular signatures to define members of the actinobacterial family Streptosporangiaceae. v1.0. South African National Biodiversity Institute. Dataset/Occurrence. http://ipt.sanbi.org.za/iptsanbi/resource?r=molecular&v=1.0
權利
研究者應尊重以下權利聲明。:
此資料的發布者及權利單位為 South African National Biodiversity Institute。 This work is licensed under a Creative Commons Attribution (CC-BY 4.0) License.
GBIF 註冊
此資源已向GBIF註冊,並指定以下之GBIF UUID: 9ffa8eaa-191a-48bf-82f3-2f9cdfa7baa4。 South African National Biodiversity Institute 發佈此資源,並經由South African Biodiversity Information Facility同意向GBIF註冊成為資料發佈者。
關鍵字
Molecular signatures; gyrB; gyrase subunit B; recA; recombinase A; inteins; Specimen
聯絡資訊
- 內容提供者 ●
- 元數據提供者 ●
- 出處 ●
- 連絡人
地理涵蓋範圍
Global
界定座標範圍 | 緯度南界 經度西界 [-52.483, -170.859], 緯度北界 經度東界 [79.432, -165.234] |
---|
分類群涵蓋範圍
All specimen identified to Species level
Family | Streptosporangiaceae (Bacteria) |
---|
時間涵蓋範圍
起始日期 / 結束日期 | 2006-06-30 / 2017-06-30 |
---|
計畫資料
The project will generate more than 100 nearly-full-length gene sequences (and associated amino acid sequences) from strains in the family Streptosporangiaceae for each of the three target genes. The intention is to generate a genus-specific barcode for each of the 13 genera, as well as a family-specific barcode for each of the three genes.
計畫名稱 | Molecular signatures to define members of the actinobacterial family Streptosporangiaceae |
---|---|
辨識碼 | IBSG13051318133 |
經費來源 | Funding from Foundational Biodiversity Information Programme (FBIP) |
研究區域描述 | Global coverage |
參與計畫的人員:
- 研究主持人
取樣方法
All the actinobacterial type strains were purchased from international culture collections, except the type strain of Nonomuraea candida, which was isolated by us (REFERENCE: Le Roes, M. and Meyers, P. R. (2008) Nonomuraea candida sp. nov., a new species from South African soil. Antonie van Leeuwenhoek; 93: 133-139).
研究範圍 | Global coverage |
---|
方法步驟描述:
- What will be done DNA sequences will be obtained from the recA, rpoB and relA genes for each type strain in the family treptosporangiaceae and also for several non-type strains. Amino acid sequences will be obtained by in silico translation of the gene sequences. For each protein, the amino acid sequences for all strains in each genus will be aligned and the alignment will be used to define a consensus amino-acid sequence for that protein for each genus (positions with variable amino acids will be designated as X). The resulting consensus amino acid sequences for each gene for the 13 genera will then be aligned and this alignment will be inspected for amino acids that are unique to each genus (genusspecific amino acid indels and amino acid sequences). These unique indels and/or sequences will be designated as signature amino acids for that genus. The identified molecular signatures will serve as amino-acid barcodes for each genus. Furthermore, for each protein, the alignment of consensus amino acid sequences for the 13 genera will also be used to define a consensus sequence for that protein for the family Streptosporangiaceae (i.e. a sequence showing the amino acids common to all strains of all genera in the family and therefore serving as a barcode for that protein for the family). Should any of the chosen genes prove to be unsuitable in distinguishing between genera in the family Streptosporangiaceae, there are several other genes that have been identified in the published literature as being potentially useful in bacterial taxonomy. Possible alternative genes are atpD, trpB and wblA. Method and approach The strains in the family Streptosporangiaceae will be grown under conditions (growth medium and temperature) that favour the production of a large amount of cell mass. Genomic DNA will be isolated from each strain using a well-established method that provides high DNA concentrations. The DNA will be stored at -20°C. PCR primers will be designed that will allow each gene (recA, rpoB and relA) to be amplified in two or more overlapping sections using Taq DNA polymerase. PCR-amplified fragments will be sequenced by Sanger sequencing and the sequences will be assembled into a single consensus sequence for each gene for each strain. Two sequences for each section of each gene will be obtained: one sequence from each of two different amplicons covering that section of the gene, so as to be able to identify and correct any Taqinduced sequencing errors. We will obtain sequences for each gene from each member of every genus in the family. For the multi-species genera (10 genera), we will initially obtain sequences from three to five phylogenetically distinct type strains in the genus (phylogenetic distinctiveness will be determined based on 16S rRNA and gyrB gene trees). This will allow us to assess whether each gene generates phylogenetic trees in which strains from the same genus form a group that is separated from the strains of other genera. We will also look for early indications of amino acid indels and/or signatures that distinguish the genera from each other. If the early results are positive for a particular gene, we will then proceed to obtain the sequences for that gene from all members of the family Streptosporangiaceae. If any gene is shown to have similar sequences between genera, it is unlikely that that gene will be taxonomically useful (as genera cannot be easily distinguished from each other based on sequences of this gene). In this case, we will substitute the unsuitable gene for another gene.