Descripción
The project will generate more than 100 nearly-full-length gene sequences (and associated amino acid sequences) from strains in the family Streptosporangiaceae for each of the three target genes. The intention is to generate a genus-specific barcode for each of the 13 genera, as well as a family-specific barcode for each of the three genes.
Registros
Los datos en este recurso de registros biológicos han sido publicados como Archivo Darwin Core(DwC-A), el cual es un formato estándar para compartir datos de biodiversidad como un conjunto de una o más tablas de datos. La tabla de datos del core contiene 122 registros.
Este IPT archiva los datos y, por lo tanto, sirve como repositorio de datos. Los datos y los metadatos del recurso están disponibles para su descarga en la sección descargas. La tabla versiones enumera otras versiones del recurso que se han puesto a disposición del público y permite seguir los cambios realizados en el recurso a lo largo del tiempo.
Versiones
La siguiente tabla muestra sólo las versiones publicadas del recurso que son de acceso público.
¿Cómo referenciar?
Los usuarios deben citar este trabajo de la siguiente manera:
Meyers P (2019): FBIP: Molecular signatures to define members of the actinobacterial family Streptosporangiaceae. v1.0. South African National Biodiversity Institute. Dataset/Occurrence. http://ipt.sanbi.org.za/iptsanbi/resource?r=molecular&v=1.0
Derechos
Los usuarios deben respetar los siguientes derechos de uso:
El publicador y propietario de los derechos de este trabajo es South African National Biodiversity Institute. Esta obra está bajo una licencia Creative Commons de Atribución/Reconocimiento (CC-BY 4.0).
Registro GBIF
Este recurso ha sido registrado en GBIF con el siguiente UUID: 9ffa8eaa-191a-48bf-82f3-2f9cdfa7baa4. South African National Biodiversity Institute publica este recurso y está registrado en GBIF como un publicador de datos avalado por South African Biodiversity Information Facility.
Palabras clave
Molecular signatures; gyrB; gyrase subunit B; recA; recombinase A; inteins; Specimen
Contactos
- Proveedor De Contenido ●
- Proveedor De Los Metadatos ●
- Originador ●
- Punto De Contacto
Cobertura geográfica
Global
Coordenadas límite | Latitud Mínima Longitud Mínima [-52,483, -170,859], Latitud Máxima Longitud Máxima [79,432, -165,234] |
---|
Cobertura taxonómica
All specimen identified to Species level
Familia | Streptosporangiaceae (Bacteria) |
---|
Cobertura temporal
Fecha Inicial / Fecha Final | 2006-06-30 / 2017-06-30 |
---|
Datos del proyecto
The project will generate more than 100 nearly-full-length gene sequences (and associated amino acid sequences) from strains in the family Streptosporangiaceae for each of the three target genes. The intention is to generate a genus-specific barcode for each of the 13 genera, as well as a family-specific barcode for each of the three genes.
Título | Molecular signatures to define members of the actinobacterial family Streptosporangiaceae |
---|---|
Identificador | IBSG13051318133 |
Fuentes de Financiación | Funding from Foundational Biodiversity Information Programme (FBIP) |
Descripción del área de estudio | Global coverage |
Personas asociadas al proyecto:
- Investigador Principal
Métodos de muestreo
All the actinobacterial type strains were purchased from international culture collections, except the type strain of Nonomuraea candida, which was isolated by us (REFERENCE: Le Roes, M. and Meyers, P. R. (2008) Nonomuraea candida sp. nov., a new species from South African soil. Antonie van Leeuwenhoek; 93: 133-139).
Área de Estudio | Global coverage |
---|
Descripción de la metodología paso a paso:
- What will be done DNA sequences will be obtained from the recA, rpoB and relA genes for each type strain in the family treptosporangiaceae and also for several non-type strains. Amino acid sequences will be obtained by in silico translation of the gene sequences. For each protein, the amino acid sequences for all strains in each genus will be aligned and the alignment will be used to define a consensus amino-acid sequence for that protein for each genus (positions with variable amino acids will be designated as X). The resulting consensus amino acid sequences for each gene for the 13 genera will then be aligned and this alignment will be inspected for amino acids that are unique to each genus (genusspecific amino acid indels and amino acid sequences). These unique indels and/or sequences will be designated as signature amino acids for that genus. The identified molecular signatures will serve as amino-acid barcodes for each genus. Furthermore, for each protein, the alignment of consensus amino acid sequences for the 13 genera will also be used to define a consensus sequence for that protein for the family Streptosporangiaceae (i.e. a sequence showing the amino acids common to all strains of all genera in the family and therefore serving as a barcode for that protein for the family). Should any of the chosen genes prove to be unsuitable in distinguishing between genera in the family Streptosporangiaceae, there are several other genes that have been identified in the published literature as being potentially useful in bacterial taxonomy. Possible alternative genes are atpD, trpB and wblA. Method and approach The strains in the family Streptosporangiaceae will be grown under conditions (growth medium and temperature) that favour the production of a large amount of cell mass. Genomic DNA will be isolated from each strain using a well-established method that provides high DNA concentrations. The DNA will be stored at -20°C. PCR primers will be designed that will allow each gene (recA, rpoB and relA) to be amplified in two or more overlapping sections using Taq DNA polymerase. PCR-amplified fragments will be sequenced by Sanger sequencing and the sequences will be assembled into a single consensus sequence for each gene for each strain. Two sequences for each section of each gene will be obtained: one sequence from each of two different amplicons covering that section of the gene, so as to be able to identify and correct any Taqinduced sequencing errors. We will obtain sequences for each gene from each member of every genus in the family. For the multi-species genera (10 genera), we will initially obtain sequences from three to five phylogenetically distinct type strains in the genus (phylogenetic distinctiveness will be determined based on 16S rRNA and gyrB gene trees). This will allow us to assess whether each gene generates phylogenetic trees in which strains from the same genus form a group that is separated from the strains of other genera. We will also look for early indications of amino acid indels and/or signatures that distinguish the genera from each other. If the early results are positive for a particular gene, we will then proceed to obtain the sequences for that gene from all members of the family Streptosporangiaceae. If any gene is shown to have similar sequences between genera, it is unlikely that that gene will be taxonomically useful (as genera cannot be easily distinguished from each other based on sequences of this gene). In this case, we will substitute the unsuitable gene for another gene.
Metadatos adicionales
Identificadores alternativos | http://ipt.sanbi.org.za/iptsanbi/resource?r=molecular |
---|