オカレンス(観察データと標本)

FBIP: Molecular signatures to define members of the actinobacterial family Streptosporangiaceae

最新バージョン South African National Biodiversity Institute によって公開 2019/06/28 South African National Biodiversity Institute
The project will generate more than 100 nearly-full-length gene sequences (and associated amino acid sequences) from strains in the family Streptosporangiaceae for each of the three target genes. The intention is to generate a genus-specific barcode for each of the 13 genera, as well as a family-specific barcode for each of the three genes.

データ レコード

この オカレンス(観察データと標本) リソース内のデータは、1 つまたは複数のデータ テーブルとして生物多様性データを共有するための標準化された形式であるダーウィン コア アーカイブ (DwC-A) として公開されています。 コア データ テーブルには、122 レコードが含まれています。

この IPT はデータをアーカイブし、データ リポジトリとして機能します。データとリソースのメタデータは、 ダウンロード セクションからダウンロードできます。 バージョン テーブルから公開可能な他のバージョンを閲覧でき、リソースに加えられた変更を知ることができます。

ダウンロード

DwC-A形式のリソース データまたは EML / RTF 形式のリソース メタデータの最新バージョンをダウンロード:

DwC ファイルとしてのデータ ダウンロード 122 レコード English で (7 kB) - 更新頻度: unknown
EML ファイルとしてのメタデータ ダウンロード English で (12 kB)
RTF ファイルとしてのメタデータ ダウンロード English で (11 kB)

バージョン

次の表は、公にアクセス可能な公開バージョンのリソースのみ表示しています。

引用方法

研究者はこの研究内容を以下のように引用する必要があります。:

Meyers P (2019): FBIP: Molecular signatures to define members of the actinobacterial family Streptosporangiaceae. v1.0. South African National Biodiversity Institute. Dataset/Occurrence. http://ipt.sanbi.org.za/iptsanbi/resource?r=molecular&v=1.0

権利

研究者は権利に関する下記ステートメントを尊重する必要があります。:

パブリッシャーとライセンス保持者権利者は South African National Biodiversity Institute。 This work is licensed under a Creative Commons Attribution (CC-BY) 4.0 License.

GBIF登録

このリソースをはGBIF と登録されており GBIF UUID: 9ffa8eaa-191a-48bf-82f3-2f9cdfa7baa4が割り当てられています。   South African Biodiversity Information Facility によって承認されたデータ パブリッシャーとして GBIF に登録されているSouth African National Biodiversity Institute が、このリソースをパブリッシュしました。

キーワード

Molecular signatures; gyrB; gyrase subunit B; recA; recombinase A; inteins; Specimen

連絡先

リソースを作成した人:

Paul Meyers
Senior Lecturer
University of Cape Town
University of Cape Town, Private Bag X3
7701 Cape Town
Western Cape
ZA
0216503261
http://www.mcb.uct.ac.za/mcb/people/staff/academic/meyers

リソースに関する質問に答えることができる人:

Paul Meyers
Senior Lecturer
University of Cape Town
University of Cape Town, Private Bag X3
7701 Cape Town
Western Cape
ZA
0216503261
http://www.mcb.uct.ac.za/mcb/people/staff/academic/meyers

メタデータを記載した人:

Paul Meyers
Senior Lecturer
University of Cape Town
University of Cape Town, Private Bag X3
7701 Cape Town
Western Cape
ZA
0216503261
http://www.mcb.uct.ac.za/mcb/people/staff/academic/meyers

他に、リソースに関連付けられていた人:

データ提供者
Paul Meyers
Senior Lecturer
University of Cape Town
University of Cape Town, Private Bag X3
7701 Cape Town
Western Cape
ZA
0216503261
http://www.mcb.uct.ac.za/mcb/people/staff/academic/meyers

地理的範囲

Global

座標(緯度経度) 南 西 [-52.483, -170.859], 北 東 [79.432, -165.234]

生物分類学的範囲

All specimen identified to Species level

Family  Streptosporangiaceae (Bacteria)

時間的範囲

開始日 / 終了日 2006-06-30 / 2017-06-30

プロジェクトデータ

The project will generate more than 100 nearly-full-length gene sequences (and associated amino acid sequences) from strains in the family Streptosporangiaceae for each of the three target genes. The intention is to generate a genus-specific barcode for each of the 13 genera, as well as a family-specific barcode for each of the three genes.

タイトル Molecular signatures to define members of the actinobacterial family Streptosporangiaceae
識別子 IBSG13051318133
ファンデイング Funding from Foundational Biodiversity Information Programme (FBIP)
Study Area Description Global coverage

プロジェクトに携わる要員:

研究代表者
Paul Meyers

収集方法

All the actinobacterial type strains were purchased from international culture collections, except the type strain of Nonomuraea candida, which was isolated by us (REFERENCE: Le Roes, M. and Meyers, P. R. (2008) Nonomuraea candida sp. nov., a new species from South African soil. Antonie van Leeuwenhoek; 93: 133-139).

Study Extent Global coverage

Method step description:

  1. What will be done DNA sequences will be obtained from the recA, rpoB and relA genes for each type strain in the family treptosporangiaceae and also for several non-type strains. Amino acid sequences will be obtained by in silico translation of the gene sequences. For each protein, the amino acid sequences for all strains in each genus will be aligned and the alignment will be used to define a consensus amino-acid sequence for that protein for each genus (positions with variable amino acids will be designated as X). The resulting consensus amino acid sequences for each gene for the 13 genera will then be aligned and this alignment will be inspected for amino acids that are unique to each genus (genusspecific amino acid indels and amino acid sequences). These unique indels and/or sequences will be designated as signature amino acids for that genus. The identified molecular signatures will serve as amino-acid barcodes for each genus. Furthermore, for each protein, the alignment of consensus amino acid sequences for the 13 genera will also be used to define a consensus sequence for that protein for the family Streptosporangiaceae (i.e. a sequence showing the amino acids common to all strains of all genera in the family and therefore serving as a barcode for that protein for the family). Should any of the chosen genes prove to be unsuitable in distinguishing between genera in the family Streptosporangiaceae, there are several other genes that have been identified in the published literature as being potentially useful in bacterial taxonomy. Possible alternative genes are atpD, trpB and wblA. Method and approach The strains in the family Streptosporangiaceae will be grown under conditions (growth medium and temperature) that favour the production of a large amount of cell mass. Genomic DNA will be isolated from each strain using a well-established method that provides high DNA concentrations. The DNA will be stored at -20°C. PCR primers will be designed that will allow each gene (recA, rpoB and relA) to be amplified in two or more overlapping sections using Taq DNA polymerase. PCR-amplified fragments will be sequenced by Sanger sequencing and the sequences will be assembled into a single consensus sequence for each gene for each strain. Two sequences for each section of each gene will be obtained: one sequence from each of two different amplicons covering that section of the gene, so as to be able to identify and correct any Taqinduced sequencing errors. We will obtain sequences for each gene from each member of every genus in the family. For the multi-species genera (10 genera), we will initially obtain sequences from three to five phylogenetically distinct type strains in the genus (phylogenetic distinctiveness will be determined based on 16S rRNA and gyrB gene trees). This will allow us to assess whether each gene generates phylogenetic trees in which strains from the same genus form a group that is separated from the strains of other genera. We will also look for early indications of amino acid indels and/or signatures that distinguish the genera from each other. If the early results are positive for a particular gene, we will then proceed to obtain the sequences for that gene from all members of the family Streptosporangiaceae. If any gene is shown to have similar sequences between genera, it is unlikely that that gene will be taxonomically useful (as genera cannot be easily distinguished from each other based on sequences of this gene). In this case, we will substitute the unsuitable gene for another gene.

追加のメタデータ