BDATA

BIODIVERSITY DATA

FBIP: Actinobacterial diversity associated with rooibos plants

Latest version published by South African National Biodiversity Institute on Sep 30, 2019 South African National Biodiversity Institute

Actinobacterial diversity associated with rooibos plants. GenBank accessions KY857826-KY857837

Data Records

The data in this occurrence resource has been published as a Darwin Core Archive (DwC-A), which is a standardized format for sharing biodiversity data as a set of one or more data tables. The core data table contains 139 records.

This IPT archives the data and thus serves as the data repository. The data and resource metadata are available for download in the downloads section. The versions table lists other versions of the resource that have been made publicly available and allows tracking changes made to the resource over time.

Downloads

Download the latest version of this resource data as a Darwin Core Archive (DwC-A) or the resource metadata as EML or RTF:

Data as a DwC-A file download 139 records in English (10 KB) - Update frequency: unknown
Metadata as an EML file download in English (14 KB)
Metadata as an RTF file download in English (13 KB)

Versions

The table below shows only published versions of the resource that are publicly accessible.

How to cite

Researchers should cite this work as follows:

Kirby B (2019): FBIP: Actinobacterial diversity associated with rooibos plants. v1.2. South African National Biodiversity Institute. Dataset/Occurrence. http://ipt.sanbi.org.za/iptsanbi/resource?r=actinobacterial&v=1.2

Rights

Researchers should respect the following rights statement:

The publisher and rights holder of this work is South African National Biodiversity Institute. This work is licensed under a Creative Commons Attribution (CC-BY) 4.0 License.

GBIF Registration

This resource has been registered with GBIF, and assigned the following GBIF UUID: cc7bb6e1-3b7e-4b22-a73a-d52fa3a94202.  South African National Biodiversity Institute publishes this resource, and is itself registered in GBIF as a data publisher endorsed by South African Biodiversity Information Facility.

Keywords

Actinobacteria associated with rooibos plants; Specimen

Contacts

Who created the resource:

Bronwyn Kirby
Senior Lecturer
University of Western Cape Institute for Microbial Biotechnology and Metagenomics, Private Bag X17, Bellville 7535 Cape Town Western Cape ZA 0219593033
http://www.imbm.co.za

Who can answer questions about the resource:

Bronwyn Kirby
Senior Lecturer
University of Western Cape Institute for Microbial Biotechnology and Metagenomics, Private Bag X17, Bellville 7535 Cape Town Western Cape ZA 0219593033
http://www.imbm.co.za

Who filled in the metadata:

Bronwyn Kirby
Senior Lecturer
University of Western Cape Institute for Microbial Biotechnology and Metagenomics, Private Bag X17, Bellville 7535 Cape Town Western Cape ZA 0219593033
http://www.imbm.co.za

Who else was associated with the resource:

Metadata Provider
Mahlatse Kgatla
FBIP Data Specialist
SANBI 2 Cussonia Avenue, Brummeria 0184 Pretoria Gauteng ZA 1284351960
http://fbip.co.za/contact/

Geographic Coverage

Four farms located near Clanwilliam and Citrusdal

Bounding Coordinates South West [-32.019, 18.878], North East [-32.008, 18.911]

Taxonomic Coverage

All specimen identified to Species level

Order  Actinomycetales

Temporal Coverage

Start Date / End Date 2014-04-08 / 2015-03-15

Project Data

Actinobacterial diversity associated with rooibos plants. GenBank accessions KY857826-KY857837

Title Actinobacterial diversity associated with rooibos plants
Identifier IBIP-BS13093049874
Funding Foundational Biodiversity Information Programme
Study Area Description Four farms located near Clanwilliam and Citrusdal

The personnel involved in the project:

Principal Investigator
Bronwyn Kirby

Sampling Methods

Rooibos samples were collected from four farms located near Clanwilliam and Citrusdal – two farms were natural (non-cultivated), organic plants, while the other two were large commercial farms which treated the plants with pesticides (plants were not irrigated). At each site leaves, roots, rhizospheric and bulk soil were collected.Actinobacteria were isolated from soil, leaves and rhizosphere. The number of actinobacteria selected from each site was limited to 100 isolates.In total 1426 actinobacteria were isolated and glycerol stocks have been prepared for all these isolates (stocks are stored in 96 well format). These strains have been stored in the Institute for Microbial Biotechnology and Metagenomic (IMBM) culture collection. Strains were de-replicated based on morphological features and antibiotic activity, which resulted in 139 strains being selected for full polyphasic characterization. Note: The culture collection will be screened in upcoming research projects. In addition, the collection is available for other researchers. The 16S rRNA gene for the 139 strains selected for full characterization isolates were amplified and the isolates were identified to the genus/species level. In highly speciated genera, such as the genus Streptomyces, the 16S rRNA gene lacks the sensitivity to resolve some species relationships. Therefore, for strains where 16S rRNA could not clearly distinguish a strain as being unique (based on phenotypic characteristics) it was decided to amplified the gyrB gene. Metagenomic analysis was very problematic. While it was relatively easy to extract metagenomic DNA from the soil samples, it was very difficult to extract DNA from rooibos leaves. When DNA was extracted the concentration was very low and the 454 amplicon workflow requires 500 ng of input DNA. In addition, the DNA contained PCR inhibitors (likely to be plant phenolics) which inhibited the emulsion PCR. After several months of optimization and one failed pyrosequencing reaction it was decided to rather use the Illumina MiSeq as the metagenomic protocol for this sequencer had just been published. The MiSeq sequencing was successful and based on preliminary data analysis at least 80 000 sequence reads pass quality filters.

Study Extent Four farms located near Clanwilliam and Citrusdal

Method step description:

  1. The project will be undertaken in the Western Cape Province and will be supervised by Drs Kirby and Le Roes-Hill, and conducted by students registered at UWC and CPUT for BSc (Honours) degrees and ND:Biotechnology, respectively. All the equipment, facilities and research expertise for the microbiological part of the project exist within the two research groups. Collaborations have been established with Prof Pieter Gouws (a member of the Rooibos Council) and Prof Jeanine Marnewick, who will assist in sample collection. Culture-based and culture-independent (metagenomic) analyses of the plants and surrounding soils will be conducted, as culture-based techniques only detect a fraction (less than 1%) of the bacterial diversity in an environment [1]. Samples will be collected from several organic and non-organic rooibos farms located within the Cedarberg Region (Citrusdal, Clanwilliam and Niewoudltville). Sampling At each site, approximately 200g of bulk soil will be collected at a depth of 5-10cm for soil analysis (soil particle size, pH, electrical conductivity, total N, total C; which will be conducted at BemLab). Six plants will be sampled at each location. Plants will be carefully removed from the soil to limit disturbance of the roots. Rhizosphere soil will be collected by shaking the root the plants in sterile plastic bags to dislodge the soil loosely associated with the roots. Root samples will also be collected and processed in the laboratory to obtain the rhizospheric soil adhering tightly to the roots. Fresh leaves will be picked from the plants and placed in sterile plastic bags. All samples will be processed within 24 hours of sampling. Isolation and culturing Actinobacteria will be isolated by placing 1 g of soil in 10 ml of sterile distilled water and vortexing vigorously to dislodge the bacteria from the soil particles. The soil suspension will be serially diluted and plated on a selection of agar media known to favour the growth of actinobacteria. All isolation plates will contain cycloheximide to limit fungal growth. For the isolation of endophytic actinobacteria from rooibos leaves, leaves will be surface sterilized with 3% bleach and 70% ethanol, rinsed twice in sterile water. Sterile leaves will be ground up in phosphate buffer using a pestle and mortar; the resulting extract will be serially diluted and plated on plant extract and tap water media [2]. Plates will be incubated at 30°C for up to 8 weeks. Actinobacteria will be identified by colony morphology. Actinobacterial identification The 16S-rRNA gene will be amplified using published protocols. Isolates will be identified to the genus level by BLAST analysis using the EzTaxon-e server [3]. Interesting isolates (i.e. those belonging to rare genera or known PGPRs) will be characterized further. Isolates which represent novel species will be characterised by a full polyphasic taxonomic approach (phylogenetic analysis, phenotypic testing, chemotaxonomic analysis, DNA-DNA hybridization, scanning electron microscopy (SEM) (4,5,6); and their descriptions will be published. Novel isolates will be deposited in curated culture collections (DSMZ and NRRL). SEM will be performed on roots and leaves to visualize actinobacterial mycelium directly associated with plant tissue. Detection of actinobacteria by metagenomic analysis Total metagenomic DNA will be isolated from the soil samples using a soil-DNA isolation kit (ZR Soil Microbe DNA kit; Zymo Research, USA). Actinobacterial 16SrRNA gene sequences will be amplified by nested PCR using universal 16S-rRNA gene PCR primers [7] and actinobacterial-specific 16S-rRNA gene primers [8,9] which have been adapted to include the 454 titanium A/B adaptor sequences. Amplicons generated from several soil/leaf samples will be pooled, sequencing libraries will be generated using Roche 454 LibL kits (unidirectional sequencing) and sequenced on a Roche GS Junior.

Additional Metadata

Alternative Identifiers http://ipt.sanbi.org.za/iptsanbi/resource?r=actinobacterial