出現紀錄

FBIP: Fungal Root Endophytes of Selected Erica species

最新版本 由 South African National Biodiversity Institute 發佈於 2019年9月30日 South African National Biodiversity Institute
Erica species are the second most dominant Fynbos plant group that associate with a specific group of fungi which form an ericoid mycorrhizal relationship with the plant roots. Little is known about the biodiversity of mycorrhizal fungi in general in South Africa and Ericoid mycorrhizas are no exception. This project's main objective it to investigate the biodiversity of root fungal endophytes of several Erica species which occur in the Albany Center of endemism.
發布日期:
2019年9月30日
授權條款:
CC-BY 4.0

資料紀錄

此資源出現紀錄的資料已發佈為達爾文核心集檔案(DwC-A),其以一或多組資料表構成分享生物多樣性資料的標準格式。 核心資料表包含 193 筆紀錄。

此 IPT 存放資料以提供資料儲存庫服務。資料與資源的詮釋資料可由「下載」單元下載。「版本」表格列出此資源的其它公開版本,以便利追蹤其隨時間的變更。

下載

下載最新版本的 Darwin Core Archive (DwC-A) 資源,或資源詮釋資料的 EML 或 RTF 文字檔。

DwC-A資料集 下載 193 紀錄 在 English 中 (10 kB) - 更新頻率: 有可能更新,但不確知何時
元數據EML檔 下載 在 English 中 (15 kB)
元數據RTF文字檔 下載 在 English 中 (14 kB)

版本

以下的表格只顯示可公開存取資源的已發布版本。

如何引用

研究者應依照以下指示引用此資源。:

Dames J (2019): FBIP: Fungal Root Endophytes of Selected Erica species. v1.1. South African National Biodiversity Institute. Dataset/Occurrence. http://ipt.sanbi.org.za/iptsanbi/resource?r=fungal&v=1.1

權利

研究者應尊重以下權利聲明。:

此資料的發布者及權利單位為 South African National Biodiversity Institute。 This work is licensed under a Creative Commons Attribution (CC-BY) 4.0 License.

GBIF 註冊

此資源已向GBIF註冊,並指定以下之GBIF UUID: 2c511f3c-7055-4056-87e4-90b1a238a623。  South African National Biodiversity Institute 發佈此資源,並經由South African Biodiversity Information Facility同意向GBIF註冊成為資料發佈者。

關鍵字

Endophtyic fungi; roots; Erica species; diversity; Specimen

聯絡資訊

資源建立者:

Joanna Dames
Head of Department & Associate Professor, Department of Biochemistry and Microbiology
Rhodes University
Department of Biochemistry and Microbiology, Mycorrhizal Research Laboratory, P.O. Box 94
6139 Grahamstown
Eastern Cape
ZA
0466038443

可回覆此資源相關問題者:

Joanna Dames
Head of Department & Associate Professor, Department of Biochemistry and Microbiology
Rhodes University
Department of Biochemistry and Microbiology, Mycorrhizal Research Laboratory, P.O. Box 94
6139 Grahamstown
Eastern Cape
ZA
0466038443

元數據填寫者:

Joanna Dames
Head of Department & Associate Professor, Department of Biochemistry and Microbiology
Rhodes University
Department of Biochemistry and Microbiology, Mycorrhizal Research Laboratory, P.O. Box 94
6139 Grahamstown
Eastern Cape
ZA
0466038443

與此資源的相關者:

內容提供者
Mahlatse Kgatla
FBIP Data Specialist
SANBI
2 Cussonia Avenue, Brummeria
0184 Pretoria
Gauteng
ZA
0128435196

地理涵蓋範圍

Eastern Cape, Makana

界定座標範圍 緯度南界 經度西界 [-33.5, 26.038], 緯度北界 經度東界 [-33.027, 26.911]

分類群涵蓋範圍

Some specimen identified to Species level

Kingdom  Fungi

時間涵蓋範圍

起始日期 / 結束日期 2013-01-01 / 2014-01-01

計畫資料

Erica species are the second most dominant Fynbos plant group that associate with a specific group of fungi which form an ericoid mycorrhizal relationship with the plant roots. Little is known about the biodiversity of mycorrhizal fungi in general in South Africa and Ericoid mycorrhizas are no exception. This project's main objective it to investigate the biodiversity of root fungal endophytes of several Erica species which occur in the Albany Center of endemism.

計畫名稱 Fungal Root Endophytes of Selected Erica species
辨識碼 IBSG13052418260
經費來源 Funding from Foundational Biodiversity Information Programme (FBIP)
研究區域描述 Eastern Cape, Makana

參與計畫的人員:

研究主持人
Joanna Dames

取樣方法

Assessment of fungal root endophyte diversity includes culturable isolates and unculturable fungi as well. DNA was extracted from surface sterilised and crushed root material and submitted for 454 sequencing at the GS Facility at Rhodes University. The sequences were compared with internal transcribed spacer (ITS) sequences available in the GenBank and UNITE databases by BLASTn search and the closest matches with homology greater than 95 % were included in the clustal alignment and phylogenetic analysis.Erica seeds were obtained from Kirstenbosch Botanical Gardens.

研究範圍 Eastern Cape, Makana

方法步驟描述:

  1. This is a current PhD project being undertaken by Ms Christine Bizabani. Ms Bizabani registered in 2012 and is due to complete at the end of 2014. Progress to date includes selection and collection or root material from Erica caffra, E. demissa, E. chamissonis, isolation and maintenance of culturable fungal root endophytes. Over 50 isolates have been morphologically and molecularly identified and have been sent to the National Fungal Culture Collection (see attached spreadsheet). Fungal isolates from E. glumifora, E cerinthoides and E. nemirosa are in process. An Honours student will contribute to a portion of the project in 2014. Assessment of fungal endophyte root biodiversity through DNA pyrosequencing and determination of phylogenetic relationships. Timeframe Jan 2014 - Oct 2014, Ms Bizabani (PhD Student). Timeframe Feb 2014- Oct 2014: An Honours student will be given one or two of the collected Erica species to work on in 2014. The student has not be identified. Assessment of fungal root endophyte diversity not only includes culturable isolates but unculturable fungi as well. DNA will be extracted from surface sterilised and crushed root material and submitted for 454 sequencing at the GS Facility at Rhodes University. The sequences will be compared with internal transcribed spacer (ITS) sequences available in the GenBank and UNITE databases by BLASTn search and the closest matches with homology greater than 95 % will be included in the clustal alignment and phylogenetic analysis. The sequences will be aligned using Clustal X. Phylogenetic analysis will be done using Molecular Evolutionary Genetics Analysis (MEGA) by the Neighbor-joining method. The robustness of the phylogeny will be analyzed by bootstrap analysis using 1000 iterations. The branches corresponding to partitions in less than 50 % bootstrap replicates will be collapsed. Positions containing gaps and missing data will be eliminated from the data set. This analysis will be conducted with the assistance of Dr Marieka Gryzenhout at the University of the Free State. Resynthesis and confirmation of endophyte status. Timeframe June 2013 - July 2014, Ms Bizabani (PhD Student) Commercial Erica seeds obtatined from Kirstenbosch will be used to test for ericoid mycorrhiza formation of selected isolates. The seeds will be surface sterilized with 3% bleach containing 100 μl l-1 Tween 20 for 1 min. The seeds will then be subsequently washed in sterile Milli-Q water twice. After sterilization the seeds will be pre treated prior to germination by soaking in Milli-Q water overnight or applying a smoke treatment. Seeds will be germinated on moist sterile filter paper and will be kept at 22 ⁰C during germination with 16 h light period and 8 h dark period. The germinated seedlings will then be transferred to sterile 150 ml square petri dishes measuring 120 mm x 15 mm containing 20 g of autoclaved vermiculite medium. Prior to seedling transfer the medium will be watered with 3 ml Sterile Milli-Q water and 0.5 ml of nutrient solution containing 15.0 μM KH2PO4, 17.0 μM MgSO4, 8.0 x 10-3 μM H3BO3, 4.0 x 10-3 μM MnCl2.4H2O, 3.0 x 10-4 μM ZnSO4.H2O, 8.0 x 10-5 μM CuSO4 and 8.0 x 10-6 μM (NH4) MO7O24.4H2O. Nine seedlings will be placed in each petri dish. After 3 weeks the root zones of the seedlings will be inoculated individually with 500 μl mycelial slurry of a particular isolated. There will be 3 replicate petri dishes (27 seedlings) for each treatment and uninoculated controls. If necessary Vaccinni corymbosium (Blueberry) micropropagated plantlets will be obtained through Amatola Berries in Stutterheim these will be inoculated in a pot trial. After 10-12 weeks roots from seedlings or plantlets will be excised and rinsed prior to clearing, staining and microscopic examination for mycorrhizal structures. Due to the length of time required for these resynthesis tests this will not form part of an Honours project. Ecological characterization of fungal isolates. Timeframe Sept 2013 - November 2014. Ms Bizabani (PhD Student) Timeframe Feb 2014- Oct 2014: A selection of isolates will assigned to an Honours student in 2014. The student has not be identified. Ecological activity of fungal endophytes will be assessed to determine biological control activity against other soil borne fungal pathogens, siderophore production, nitrogen and phosphate assimilation, phosphate solubilisation, lignocellulolytic activity and tolerance to metal toxicity. Antimicrobial screening will be conducted in dual culture between pathogens (Fusarium and Phytophthora) and endophytic isolates. Pathogen growth will be monitored daily. The endophytic isolates will also be tested for siderophore production which is a iron chelator using a Chrome Azurol S agar plate assay. The ability of the isolates to utilize organically bound nitrogen and phosphate will be assessed in a liquid basal medium amended with various organic (such as glutamine, arginine, BSA, glycerophosphate and RNA). Medium will be incubated for 7-10 days and filtered mycelium will be oven dried and biomass will be recorded. Phosphate solubilisation will be assessed on bromophenol blue medium containing insoluble Ca phosphate as the only P source. Development of yellow halo will indicate the presence of organic acids which contribute to the release of P. Linocellulolytic activity will be assessed using a basal medium amended with cellulose azure dye. A release of azure dye ndicates cellulose degradation. Tolerance to zinc, copper and cadmium will also be assessed in media amended with different concentrations of the metals. Fungal growth will be measure at regular intervals over an 8 week period.

額外的詮釋資料